An improved criterion for stability and attractability of memristive neural networks with time-varying delays

نویسندگان

  • Ailong Wu
  • Zhigang Zeng
چکیده

Memristive neural networks are a novel topic in the design and construction of brain-like circuitry system. This paper addresses a challenging problem: How to derive some less conservative theoretical results on the stability and attractability for memristive neural networks? In this paper, a new comparison method and segmentation method of state space are developed. A succinct criterion is provided to ascertain the global exponential stability and the estimate for location of equilibrium point. The obtained criterion is the improvement and extension of the existing results in the literature. The applicability of the proposed framework can be extended to general memristive neurodynamic systems. Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Attractability and location of equilibrium point of cellular neural networks with time-varying delays

This paper presents new theoretical results on global exponential stability of cellular neural networks with time-varying delays. The stability conditions depend on external inputs, connection weights and delays of cellular neural networks. Using these results, global exponential stability of cellular neural networks can be derived, and the estimate for location of equilibrium point can also be...

متن کامل

Joint influence of leakage delays and proportional delays on almost periodic solutions for FCNNs

This paper deals with fuzzy cellular neural networks (FCNNs) with leakage delays and proportional delays. Applying the differential inequality strategy, fixed point theorem and almost periodic function principle, some sufficient criteria which ensure the existence and global attractivity of a unique almost periodic solution for fuzzy cellular neuralnetworks with leakage delays and p...

متن کامل

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2014